

Technický a zkušební ústav stavební Praha, s.p. Prosecká 811/76a 190 00 Prague Czech Republic T: +420 286 019 400 W: www.tzus.cz

European Technical Assessment

ETA 14/0425 of 28/04/2020

General Part

Technical Assessment Body issuing the European Technical Assessment Technický a zkušební ústav stavební Praha, s.p.						
Trade name of the construction product	DMX®					
Product family to which the construction product belongs	Product area: 13 Three-Dimensional Nailing Plates					
Manufacturer	DOMAX Sp.z o.o. Aleja Parku Krajobrazowego 109 84-207 Koleczkowo Łężyce Republic of Poland					
Manufacturing plant	DOMAX Sp.z o.o. Aleja Parku Krajobrazowego 109 84-207 Koleczkowo Łężyce Republic of Poland					
This European Technical Assessment contains	65 pages including 6 annexes, which form an integral part of this European Technical Assessment					
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	ETAG 015 used as European Assessment Document (EAD)					
This version replaces	ETA 14/0425, version 01, issued on 13/11/2014					

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

Specific Parts

1 Technical description of the product

The three-dimensional nailing plates DMX[®] are one-piece, non-welded or welded (KKB, PS, SDP 90 A, SDP 90 B, SDP 100 A, SDP 100 B, SDP 120 A, SDP 120 B, SDSP 70 A, SDSP 70 B) elements, made of the cold-formed steel sheet grade DX51D according to EN 10346 with the zinc coating mass of 275 g/m², electrogalvanized steel DC01 according to EN 10131 with corrosion protection Fe/Zn 12 or S235 according to EN 10025-2 with minimum 12 μ m of zinc layer. Elements SD and SDS have extra powder coating 60 μ m (see list below). The three-dimensional nailing plates DMX[®] correspond to the drawings and dimensions given in Annex 1.

Type of Domax connector	Made of	Kind of corrosion protection
KLR	DX51D	Z275
KP	DX51D	Z275
KPK	DX51D	Z275
KPL	DX51D	Z275
	KR 1 – DC01	Fe/Zn 12
KR	KR 2 – DX51D	Z275
	KR 3 – DX51D	Z275
KRD	DX51D	Z275
LU	DX51D	Z275
WBC	DX51D	Z275
WBU	DX51D	Z275
ŁB	S235	Fe/Zn 12
NT	DX51D	Z275
KKB	S235	Fe/Zn 12
PS	S235 / B500	Fe/Zn 12
KPS	DX51D	Z275
	SDLZ 1 – DX51D	Z275 + Powder Coating 60 µm
	SDKLR 1 – DX51D	Z275 + Powder Coating 60 µm
	SDKL 1 – DX51D	Z275 + Powder Coating 60 µm
	SDP 90 A – S235	Fe/Zn 12 + Powder Coating 60 µm
	SDP 90 B – S235	Fe/Zn 12 + Powder Coating 60 µm
SD	SDP 100 A – S235	Fe/Zn 12 + Powder Coating 60 µm
	SDP 100 B – S235	Fe/Zn 12 + Powder Coating 60 µm
	SDP 120 A – S235	Fe/Zn 12 + Powder Coating 60 µm
	SDP 120 B – S235	Fe/Zn 12 + Powder Coating 60 µm
	SDD 85 A – DX51D	Z275 + Powder Coating 60 µm
	SDD 85 B – DX51D	Z275 + Powder Coating 60 µm
	SDSP 70 A – S235	Fe/Zn 12 + Powder Coating 60 µm
	SDSP 70 B – S235	Fe/Zn 12 + Powder Coating 60 µm
	SDSKW 2 – DX51D	Z275 + Powder Coating 60 µm
	SDSKW 8 – DX51D	Z275 + Powder Coating 60 µm
	SDSKP 1 – DX51D	Z275 + Powder Coating 60 µm
	SDSKP 5 – DX51D	Z275 + Powder Coating 60 µm
SDS	SDSKM 7 – DX51D	Z275 + Powder Coating 60 µm
	SDSWBZ 10 – DX51D	Z275 + Powder Coating 60 µm
	SDSWBZ 11 – DX51D	Z275 + Powder Coating 60 µm
	SDSWBZ 14 – DX51D	Z275 + Powder Coating 60 µm
	SDSWBZ 21 – DX51D	Z275 + Powder Coating 60 µm
	SDSWBZ 26 – DX51D	Z275 + Powder Coating 60 µm
	SDSWBZ 30 – DX51D	Z275 + Powder Coating 60 µm

Technical description of the product

1.1 Identification

The identification parameters and reference to product specifications for identifying the materials and components which constitute the three dimensional nailing plates are given in Annex 1.

2 Specification of the intended use(s) in accordance with the applicable European Assessment Document (hereinafter EAD)

The DMX[®] three-dimensional nailing plates are intended to be used in timber to timber connections as well as connections between a timber joist and a concrete structure or a steel member. For connecting the mutually perpendicular, load-bearing, solid timber elements, in side-grain to side-grain configurations, in joints for which requirements for mechanical resistance and stability in the sense of the basic requirement 1 of Regulation (EU) No 305/2011 shall be fulfilled.

Ring shank nails according to EN 14592 with the diameter of 4 mm and characteristic tensile capacity $F_{ax,Rk}$ not less than 1.80 kN shall be used for connections made with the DMX[®] three-dimensional nailing plates.

In respect of the requirements concerning corrosion resistance, DMX[®] three-dimensional nailing plates are for use in timber structures subjected to the internal conditions defined by service classes 1, 2 and 3 (connectors with additional powder coating) according to EN 1995-1-1 (Eurocode 5), in corrosion aggressiveness categories C1 and C2 according to EN ISO 12944-2, without action of acid gases or vapours.

The provisions made in this European Technical Approval are based on an assumed working life of the product of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or approval body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

The assessment of the fitness of the DMX[®] three-dimensional nailing plates for the intended use has been made in compliance with the ETAG 015 "*Three-dimensional nailing plates*" used as European Assessment Document (EAD).

2.1 Installation of three-dimensional nailing plates

The fitness for use of the DMX® three-dimensional nailing plates can only be assumed if the following conditions of installation are met:

- installation is carried out by appropriately qualified personnel under the supervision of the person qualified for this work,
- the original three-dimensional nailing plates only are used, supplied by the manufacturer together with the appropriate ring shank nails defined in clause 2.2.2,
- three-dimensional nailing plates installation is in accordance with the manufacturer's installation guide,
- before placing the three-dimensional nailing plates, the characteristics of timber members (type, class and moisture content) in which the nailing plates are to be placed are checked to ensure that they are identical or better than the characteristics of timber members used in testing in which the characteristic load-carrying capacities were determined,
- timber member placed in three-dimensional nailing plate does not contain the wanes and the gap between the connected elements does not exceed 3 mm.

3 Performance of the product and references to the methods used for its assessment

The assessment of the fitness for use of the three dimensional nailing plates according to the basic work requirements (BWR) were carried out in compliance with ETAG 015.

The European Technical Assessment is issued for the three dimensional nailing plates on the basis of agreed data and information, deposited at Technický a zkušební ústav stavební Praha, s.p., which identifies three dimensional nailing plates that has been assessed and judged. Changes to the plates or production process which could result in this deposited data and information being incorrect should be notified to Technický a zkušební ústav stavební Praha, s.p. before the changes are introduced. Technický a zkušební ústav stavební Praha, s.p. will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alternations to the ETA shall be necessary.

	Essential characteristic	Performance						
3.1 BW	3.1 BWR 1: Mechanical resistance and stability							
3.1.1	Joint strength	See Annex 3						
3.1.2	Joint stiffness	NPA						
3.1.3	Joint ductility in cyclic testing	NPA						
3.2 BW	R 2: Safety in case of fire							
3.2.1	Reaction to fire	The steel elements are classified as class A1 of reaction to fire (non-combustible products) in accordance with EN 13501-1+A1 and to European Commission Decision 96/603/EC amended by European Commission Decision 2000/605/EC.						
3.2.2	Resistance to fire	NPA						
3.3 BW	R 3: Hygiene, health and the enviro	onment						
3.3.1	Content, emission and/or release of dangerous substances	See 3.3.1						
BWR 4:	Safety and accessibility in use							
Not rele	evant							
BWR 5:	Protection against noise							
Not rele	evant							
BWR 6: Energy economy and heat retention								
Not rele	evant							
BWR 7:	Sustainable use of natural resource	ces						
Not rele	evant							

Table 1 Essential characteristics of the product

3.1 Mechanical resistance and stability (BWR 1)

3.1.1 Joint strength

The characteristic load-carrying capacities of joints loaded according to static diagrams (shown in Annex 2), determined by tests carried out according to ETAG 015, clause 5.1.3, are given in Annex 3. The characteristic load-carrying capacities of joints for other load direction shall be calculated on the basis of EN 1995-1-1 (Eurocode 5) or according to national regulations. The design values shall be determined according to EN 1995-1-1 (Eurocode 5).

Following the requirements of ETAG 015 for the minimum number of specimens for determining the characteristic load-bearing capacities through testing the applicant provided the laboratory with 5 specimens of each test assembly distinguished by a connector type, configuration of the connection and static scheme (direction of force actions).

The modifications of standard procedures applied come from the requirements of ETAG 015. The procedure specified in standard ref. 6 is modified as required in EOTA TR 016 *Method of testing Three-Dimensional Nailing Plates* with examples, namely the procedure corresponding to the case "*Test specimens fulfil EN ISO 8970*", which as stated above was relevant in all cases.

As agreed in between the applicant and the laboratory the manufacture, conditioning and transportation of the test assemblies into the laboratory was carried out by the applicant under specified conditions.

The conditions were as follows:

The timber members used – sawn timber blanks of European whitewood, grade C24, free from major defects in the area of the connector. Selection of timber members within a test group (the five specimens) referring to densities should comply with the requirements of EN ISO 8970. During testing of connectors at Technický a zkušební ústav stavební Praha, s.p. were used a timber specimens with characteristic density 350 kg/m³.

The samples came in four successive deliveries in condition "fit for direct testing" meaning that conditioning the timber elements to equilibrium moisture content in line with the requirements of Cl. 2.4.1.1.3.3. ETAG 015 was carried out by the applicant. The completed and conditioned test assemblies were delivered protected by a plastic wrap.

Conditioning in the laboratory consisted in equalisation of temperatures of the specimens and the ambient temperature by storing in the laboratory for 3 days as a minimum, during which time the specimens remained wrapped in plastic cover. In the majority of cases the term of storing was much longer.

Dimensions of the timber members, relative moisture content and weight of the assemblies were determined for control whether the density of timber blanks complies with the requirements of EN ISO 8970. This was carried out with specimens unwrapped just before the load testing of each specimen. It is stated that in the majority of cases the requirement of the standard have been met. In several cases when the mean wood density was above the scope stated by the standard, allowance was made in line with the respective provision of EOTA TR 016.

3.1.2 Joint stiffness

No performance assessed.

3.1.3 Joint ductility in cyclic testing

No performance assessed.

3.2 Safety in case of fire (BWR 2)

3.2.1 Reaction to fire

The steel elements are classified as class A1 of reaction to fire (non-combustible products) in accordance with EN 13501-1+A1 and to European Commission Decision 96/603/EC amended by European Commission Decision 2000/605/EC.

3.2.2 Resistance to fire

Performance in relation to fire resistance would be determined for the complete structural element with any associated finishes, therefore there is no performance assessed option used to this Basic Work Requirement.

3.3 Hygiene, health and the environment (BWR 3)

3.3.1 Content, emission and/or release of dangerous substances

The manufacturer submit a written declaration whether or not and in which concentrations the three dimensional nailing plates contain substances which are classified as dangerous according to Directive 67/548/EEC and European Commission Regulation No 1272/2008. In addition to the specific clauses relating to dangerous substances, there may be other requirements applicable to the products falling within their scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

3.4 Safety and accessibility in use (BWR 4)

Not relevant.

3.5 **Protection against noise (BWR 5)**

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was assessed for this product.

3.8 Aspects of durability, serviceability and identification

3.8.1 Durability and serviceability

The DMX[®] three-dimensional nailing plates have been assessed as having satisfactory durability and serviceability when used in conditions defined by service classes 1 and 2 according to EN 1995-1-1 (Eurocode 5).

3.8.2 Identification

Each three-dimensional nailing plate is to be marked with the symbol and the product type designation according to the Annex 1.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

According to the decision 1997/638/EC¹, of the European Commission the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011 and Commission delegated Regulation (EU) No 568/2014) given in the following table applies:

Product(s)	Intended use(s)	Level(s) or class(es)	Attestation of conformity system(s)
Shear plates, toothed-plate connectors, punched nail plates, nailing plates	For structural timber products		2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Issued in Prague on 28.04.2020

By Mária Schaan Head of the TAB

Annexes:

- Annex 1 Product details and definitions
- Annex 2 Loading and calculations according to static diagrams
- Annex 3 The characteristic load carrying capacities of connectors
- Annex 4 Nailing patterns
- Annex 5 Specification of connection elements
- Annex 6 Reference documents

¹ Official Journal of the European Communities L 268/36 of 19.9.1997

ANNEX 1

PRODUCT DETAILS AND DEFINITIONS

Figure 1 Type KRD 5

Figure 2 Type KRD 6

Symbol		Number of holes			
	W	Н	В	D	ø 5
KRD 5	56	58	32	2	27
KRD 6	56	58	32	2	27

Figure 3 Type KKB 1

Table 3 KKB three-dimensional nailing plate symbols and dimensions

Symbol		Dimensio	ons, mm	Quantity of openings			
Symbol	W	Н	В	D	ø 5	ø 11	ø 18
KKB 1	60	400	56	3	24	6	1

Figure 4 Type KLR 1

Figure 5 Type KLR 2

Table 4 KLR three-dimensional nailing plate symbols and dimensions	
--	--

Symbol	Dimensions, mm					
	W	н	В	D	ø 5	ø 11
KLR 1	35	50	50	2.5	8	2
KLR 2	55	70	70	2.5	20	2

Figure 7 Type KLR 4

Symbol		Dimensio	Quantity of openings				
Symbol	W	н	В	D	ø 5	ø 7	ø 11
KLR 3	65	90	90	2.5	16	12	2
KLR 4	35	100	100	2.5	16	-	4

Figure 8 Type KLR 5

Figure 9 Type KLR 6

Symbol		Dimensio	Quantity of openings				
Symbol	W	Н	В	D	ø 5	ø 11	ø 14
KLR 5	90	105	105	2.5	36	-	2
KLR 6	55	140	140	2.5	36	4	-

Figure 10 Type KP 7

Figure 11 Type KP 8

Table 7 KP three-dimensional nailing plate symbols and dimensions

Symbol		Dimensio	Quantity of openings			
Symbol	W	Н	В	D	ø 5	ø 14
KP 7	90	143	143	2.5	56	8
KP 8	90	143	65	2.5	17	4

igure 14]	ype KPS 3
------------	-----------

Figure 15 Type KPS 4

	Table 8 KP	S three-dimensional	nailing plate	symbols and	l dimensions
--	------------	---------------------	---------------	-------------	--------------

Symbol	Dimensions, mm				Quantity of openings			
Symbol	W	Н	В	D	ø 5	ø 7	ø 11	ø 14
KPS 1	65	90	90	1,5	16	12	2	-
KPS 2	90	105	105	1,5	36	-	-	2
KPS 3	55	90	50	1,5	20	-	2	-
KPS 4	55	70	70	1,5	20	-	2	-

Figure 16 Type KPK 13

Figure 17 Type KPK 11

Figure 18 Type KPK 12

Table 9 KPK three-dimensional nailing pla	late symbols and dimensions
---	-----------------------------

Symbol		Dimensio	Quantity of openings			
	W	Н	В	D	ø 5	ø 11
KPK 11	45	93	50	2.5	11	3
KPK 12	75	93	50	2.5	17	5
KPK 13	110	93	50	2.5	25	6

Figure 19 Type KPK 21

Figure 20 Type KPK 22

Table 10 KPK three-dimensional nailing plate symbols and dimensions

Symbol		Dimensio	Quantity of openings			
	W	Н	В	D	ø 5	ø 11
KPK 21	65	93	63	2.5	14	3
KPK 22	65	93	63	2.5	14	3
KPK 23	65	93	63	2.5	14	3

W

C

0^{Ø5}

14 14 14 14 14

C

8 14

Figure 24 Type KPK 33

Table 11 KPK	three-dimensional	nailing plate	symbols	and dimensions
		numing plate	Symbolo	

Symbol		Dimensio	Quantity of openings			
	W	н	В	D	ø 5	ø 11
KPK 31	65	93	63	2.5	9	-
KPK 32	65	93	63	2.5	9	1
KPK 33	65	93	63	2.5	9	-
KPK 4	100	63	63	2.5	22	-

D

в

KPK 4

H

Figure 26 Type KPL 5

Figure 27 Type KPL 6

D

KPL 21

W

12,5 10

Ø14 O

 \bigcirc

8,5 15

0,0 + 15 15 + 15 15 + 15 15 + 15 15 + 20

10 12,5

 Θ

 Θ

OØ

Figure 28 Type KPL 11

Figure 29 Type KPL 21

Table 12 KPI	three-dimensional	l nailing plate :	symbols and	d dimensions
	unce-unnensional	i naming plates	symbols and	

8,5 15

······································								
Symbol	Dimensions, mm				Quantity of openings			
	W	Н	В	D	ø 5	ø 7	ø 11	ø 14
KPL 5	35	50	50	2	8	-	2	-
KPL 6	45	60	60	2	12	-	2	-
KPL 11	65	90	90	2	13	9	5	-
KPL 21	90	105	105	2	28	-	4	1

Figure 30 Type KR 1

Figure 31 Type KR 2

Figure	32	Туре	KR	3
--------	----	------	----	---

Symbol	Dimensions, mm				Quantity of openings			
Symbol	W	Н	В	D	ø 5	ø 6	ø 9	ø 11
KR 1	20	65	75	3	-	2	-	-
KR 2	60	60	40	2.5	12	-	2	1
KR 3	65	72	42	4	-	3	-	-

Figure 33 Type LB 1

Figure 34 Type LB 2

Table 14 LB three-dimensional nailing plate symbols and dimensions

Symbol		Quantity of openings			
,	W	Н	В	D	ø 14
LB 1	50	70	70	6	1
LB 2	60	90	70	8	1
LB 4	50	70	45	6	1

Figure 36 Type LU25 L120

Table 15 LU25 three-dimensional nailing plate symbols and dimension

Symbol		Dimensio	Quantity of openings			
Symbol	W	Н	В	D	ø 5	ø 11
LU25 L80	80	142	45	2	16	4
LU25 R80	80	142	45	2	16	4
LU25 L120	120	142	45	2	24	6
LU25 R120	120	142	45	2	24	6

Table 16 NT	three-dimensional	nailing plate	symbols and	dimensions

Symbol		Quantity of openings			
	W	Н	В	D	ø 5
NT 25	30	137	25	1.5	12
NT 40	40	140	36	2	10
NT 60	60	140	36	2	14

Figure 38 Type WBC 80

Symbol		Dimensio	ons, mm	Quantity of openings		
	W	Н	В	D	ø 5	ø 11
WBC 80	80	428	100	2	38	6
WBC 92	92	443	114	2	42	8
WBC 100	100	443	120	2	42	8
WBC 120	120	505	148	2	48	10
WBC 137	137	515	160	2	52	12

Table 17 WBC three-dimensional nailing plate symbols and dimensions

Table 18 WB	3U 45 three-dimensional nailing plate symbols a	and dimensions
		Quantity of

Symbol		Dimensio	Quantity of openings			
	W	н	В	D	ø 5	ø 11
WBU45 R45/105 WBU45 L45/105	45	105	155	2	12	2
WBU45 R50/105 WBU45 L50/105	50	105	162	2	12	2
WBU45 R60/120 WBU45 L60/120	60	120	176	2	15	2

Figure 40 Type PS 90

Symbol		Quantity of openings				
	W	Н	В	D	Р	ø 11
PS 60	61	120	60	4	ø 16	6
PS 70	71	120	60	4	ø 16	6
PS 80	81	120	60	4	ø 18	6
PS 90	91	120	60	4	ø 18	6
PS 100	101	120	60	4	ø 18	6
PS 120	121	120	60	4	ø 18	6
PS 140	141	120	60	4	ø 18	6

Table 19 PS three-dimensional nailing plate symbols and dimensions

Figure 41 Type SDKL 1

Table 20 SDKL three-dimensional nailing plate symbols and dimensions

Symbol		Dimensio	ons, mm		Quant	tity of ope	enings
Symbol	W	н	В	D	ø 5.5	ø 7.5	11/3
SDKL 1	85	58	58	2,5	4	6	6

Figure 42 Type SDKLR 1

Symbol		Dimensio	ons, mm		Quant	ity of ope	enings
Symbol	W	Н	В	D	ø 5.5	ø 7.5	11/3
SDKLR 1	85	57	57	2,5	4	6	6

Figure 43 Type SDLZ 1

 Table 22 SDLZ 1 three-dimensional nailing plate symbols and dimensions

Symbol		Dime	ensions, m	m		Quantity of openings			
Symbol	W	Н	В	S	D	ø 5.5	ø 7.5	11/3	
SDLZ 1	85	96,5	47	24	2,5	4	6	6	

Figure 44 Type SDP 90 A

Table 23 SDP 90 A three-dimensiona	I nailing plate symbols and dimensions
------------------------------------	--

Symbol	Dir	nensions, r	nm	Quantity of openings			
Symbol	W	н	D	ø 5.5	ø 8.5	11/3	
SDP 90 A	91	90	2	8	4	12	
SDP 100 A	101	90	2	8	4	12	
SDP 120 A	121	90	2	8	4	12	

Figure 45 Type SDP 90 B

Symbol		Dimensions, mm Quan			Quant	ity of ope	enings
Symbol	W	н	D	В	ø 5.5	ø 11	11/3
SDP 90 B	91	97	2	197	8	4	12
SDP 100 B	101	97	2	207	8	4	12
SDP 120 B	121	97	2	227	8	4	12

Table 24 SDP 90 B three-dimensional nailing plate symbols and dimensions

Figure 46 Type SDSKM 7

Table 25 S	DSKM	three-dimer	nsional r	nailing	plate	symbols	and	dimensions

Svmbol		Dimensio	ons, mm		Quantity of openings
	W	н	В	D	ø 5
SDSKM 7	40	98	98	2	16

Figure 47 Type SDSKP 1

Figure 48 Type SDSKP 5

|--|

Symbol		Dimensio	Quan	tity of ope	nings		
Symbol	W	Н	В	D	ø 5	ø 7	ø 11
SDSKP 1	65	115	115	2,5	16	12	2
SDSKP 5	65	165	165	2,5	26	-	2

Figure 49 Type SDSKW 2

Figure 50 Type SDSKW 8

	Table 27	SDSKW	three-dimensional	nailing plate	symbo	ls and	dimensions
--	----------	-------	-------------------	---------------	-------	--------	------------

Symbol		Dimensio	Quantity of openings			
	W H B D					ø 5.5
SDSKW 2	17	40	40	1,5	4	-
SDSKW 8	40	50	50	2	-	2

Figure 51 Type SDSP 70 A

Table 28 SDSP three-dimensional nailing plate symbols and dimensions

Symbol	Dir	nensions, n	Quantity o	f openings	
Symbol	W H D		ø 5.5	ø 8.5	
SDSP 70 A	71	115	2	4	4

Figure 52 Type SDSP 70B

Symbol		Quan oper	tity of nings			
	W	н	D	В	ø 5.5	ø 11
SDSP 70 B	71	129	2	177	4	4

Figure 53 Type SDSWBZ 10

Figure 54 Type SDSWBZ 21

Symbol	Din	nensions, r	Quantity of openings		
Symbol	W	Н	D	ø 5	ø 11
SDSWBZ 10	51	105	2	16	-
SDSWBZ 11	51	135	2	24	-
SDSWBZ 14	60	100	2	16	-
SDSWBZ 21	70	125	2	28	4
SDSWBZ 26	80	120	2	28	4
SDSWBZ 30	100	140	2	34	4

MASKING ELEMENTS

Figure 55 Type SDD 85 A

 Table 31 SDD masking elements symbols and dimensions

Svmbol	Din	Quantity of openings		
	W	н	D	ø 5.5
SDD 85 A	85	83	2,5	2
SDD 85 B	85	83	2,5	2

CONNECTION ELEMENTS

Figure 56 Type SDCS 50

Table 32 SDCS dowel type connector	symbols and dimensions
------------------------------------	------------------------

Symbol	Dimensions, mm						
бутрог	W	н	D				
SDCS 50	20.5	50	5.2				

Figure 57 Type ANG 50

Table 33 Anchor dowel type connector symbols and dimensions

Symbol	Dimensions, mm							
Symbol	D	Н	L	W				
ANG 40	4	40	26.8	8				
ANG 50	4	50	36.8	8				

Figure 58 Type CS 5x40

Table	34 CS	dowel	typ	be	connector	S	ymbols	and	dime	nsions
-------	-------	-------	-----	----	-----------	---	--------	-----	------	--------

Symbol	Dimensions, mm					
Symbol	D	Н	W			
CS 5x40	5	40	9.5			
CS 5x50	5	50	9.5			

Symbol		Standard				
Symbol	D	Н	L	W	Т	Standard
M5x16	M5	16	16	8	3.5	ISO 4017
M10x80	M10	80	26	16	6.4	ISO 4014
M12x90	M12	90	30	18	7.5	ISO 4014
M16x160	M16	160	44	24	10	ISO 4014

Table 35 M bolt type connector symbols and dimensions

Figure 60 Type Ø12x100

Table	36	Ø12x100	type	connector	symbols	and	dimensions
-------	----	---------	------	-----------	---------	-----	------------

Symbol		Standard				
Symbol	D	Н	L	W	Т	Standard
Ø12x100	12	100	75	19	8	DIN 571

ANNEX 2

LOADING ACCORDING TO STATIC DIAGRAMS

(for selected elements)

Figure 61 Scheme 1

Figure 62 Scheme 2

Figure 63 Scheme 3

No.	Scheme	Connector types
4		KPK 4
	L.	

Figure 64 Scheme 4

Figure 65 Scheme 5

Figure 66 Scheme 6

Figure 67 Scheme 7

No	Schomo	Connector types
INU.	Scheme	Connector types
8		LU 25 R80; L80 R120; L120

Figure 68 Scheme 8

CALCULATIONS ACCORDING TO STATIC DIAGRAMS

(for selected elements)

Figure 69 Scheme 9

No.	Scheme	Connector types
10		SDP 90 B SDP 100 B SDP 120 B

Figure 70 Scheme 10

Figure 71 Scheme 11

Figure 73 Scheme 13

Figure 74 Scheme 14

Figure 75 Scheme 15

Figure 76 Scheme 16

Figure 77 Scheme 17

Figure 78 Scheme 18

Figure 79 Scheme 19

ANNEX 3

THE CHARACTERISTIC LOAD-CARRYING CAPACITIES OF CONNECTORS

Table 37							
Type		Timber	Density	P	P		
aroup	Туре	Moisture	$ ho_{mean,\ 12\%}$	i max, mean		Note No.	
group		[%]	[kg·m⁻³]				
КР	KP 7	16.9	428.2	18.34	12.5	1	
	KP 8	23.0	411.7	20.62	12.9	1	
	KPL 5	15.2	421.2	8.09	6.8	2	
KPI	KPL 6	12.9	422.8	9.49	6.2	2	
	KPL 11	14.9	452.1	18.43	13.0	2	
	KPL 21	15.6	472.7	21.23	17.1	2	
	KPK 4	14.3	416.8	15.85	12.7	2	
	KPK 11	17.7	460.8	13.00	10.4	2	
	KPK 12	14.3	460.9	17.32	13.5	2	
	KPK 13	13.4	398.2	22.13	16.7	2	
KDK	KPK 21	12.3	468.5	13.53	10.8	2	
	KPK 22	11.3	407.5	13.14	10.6	2	
	KPK 23	11.3	460.9	12.79	9.0	2	
	KPK 31	13.6	436.6	12.44	9.3	3	
	KPK 32	12.2	424.8	12.62	10.5	3	
	KPK 33	15.4	415.4	13.66	10.5	3	
	KLR 1	13.8	422.2	5.71	4.2	2	
	KLR 2	15.5	429.7	10.95	7.9	2	
KID	KLR 3	15.5	407.1	10.59	8.3	2	
NLN	KLR 4	15.7	468.1	6.35	5.1	2	
	KLR 5	15.3	410.8	15.41	13.6	2	
	KLR 6	16.0	497.6	9.98	7.2	2	
	KR 1	13.4	438.8	6.74	5.1	2	
KR	KR 2	14.6	396.2	12.29	6.7	2	
	KR 3	14.7	408.7	7.53	6.3	2	
	WBC 80	14.7	423.2	42.06	34.9	2	
	WBC 92	16.8	424.0	42.79	36.1	2	
WBC	WBC 100	14.9	423.6	42.71	26.8	2	
	WBC 120	16.7	414.3	47.22	29.2	2	
	WBC 137	14.9	428.4	52.44	42.1	2	
WBU	WBU 45 R45-105	15.6	385.4	16.96	11.0	2	
	WBU 45 R50-105	14.5	387.0	16.43	12.4	2	
	WBU 45 R60-120	14.9	423.8	21.47	16.5	2	
חסא	KRD 5	16.1	453.8	9.65	6.1	2	
	KRD 6	16.1	430.8	8.74	6.1	2	
111	LU 25 R80	14.7	436.5	9.07	6.1	2	
LU	LU 25 R120	14.6	414.5	14.76	12.3	2	

Notes:

1 Given forces are per one connector (one angle bracket), the test connections consisted of two connectors, forces for the complete connections are twice as high

2 One connector

3 The forces are given for the complete connection consisting of two connectors, hence force per one connector (one angle bracket) is half of the given value

THE CHARACTERISTIC LOAD-CARRYING CAPACITIES OF JOINTS (LOADING)

		10	ible 30			
Type group	Туре	Timber Moisture [%]	Density <i>p_{mean, 12%}</i> [kg⋅m ⁻³]	P _{max,} ^{mean} [kN]	P _{max, k} [kN]	Note No.
ŁB	ŁB 1	12.0	400.1	13.41	9.9	1
	ŁB 2	12.0	400.1	15.27	10.4	1
	ŁB 4	12.0	400.1	12.73	9.4	1
	NT 25			25.26	15.7	2
NT	NT 40			37.14	32.8	2
	NT 60			67.62	59.8	2
KKB	KKB 1	12.0	400.0	81.14	57.6	3

Table 38

Notes:

1 Given forces are for one connector, the test connections consisted of two connectors, hence the force for the complete connection is twice the given

2 One connector loaded in tension

3 Given forces are for the complete connection, the test connections consisted of two connectors, hence force for one connector is half of the given

THE CHARACTERISTIC LOAD-CARRYING CAPACITIES OF JOINTS (CALCULATIONS)

Table 39							
Type of	Load	Bearing Ca	apacity [kN]	Method of	Document No		
connector	Luau	Timber	Steel	determination	Document No.		
SDLZ 1	shear	3.6		calculation	KAO-O-SOD-13		
SDKLR 1	oblique	3.3		calculation	KAO-O-SOD-12		
	pull out		1.1	calculation	KAO-O-SOD-10		
SURL I	pressure	3.3		calculation	KAO-O-SOD-11		
SDSP 70 A	pressure	34.8		calculation	KAO-O-SOD-23		
SDSP 70 B	pressure	108.6		calculation	KAO-O-SOD-24		
SDP 90 A	pressure	39.6		calculation	KAO-O-SOD-15		
SDP 90 B	pressure	180.6		calculation	KAO-O-SOD-17		
SDP 100 A	pressure	39.6		calculation	KAO-O-SOD-15		
SDP 100 B	pressure	220.5		calculation	KAO-O-SOD-17		
SDP 120 A	pressure	39.6		calculation	KAO-O-SOD-15		
SDP 120 B	pressure	312.9		calculation	KAO-O-SOD-17		
SDSKW 2	pressure	3	.3	testing	KAO-O-SOD-21		
SDSKW 8	pressure	3	.5	testing	KAO-O-SOD-22		
SDSKP 1	pressure	17	7.8	testing	KAO-O-SOD-21		
SDSKP 5	pressure	10).9	testing	KAO-O-SOD-21		
SDSKM 7	pressure	5	.8	testing	KAO-O-SOD-21		
SDSWBZ 10	pressure	9.6		calculation	KAO-O-SOD-18		
SDSWBZ 11	pressure	12.3		calculation	KAO-O-SOD-19		
SDSWBZ 14	pressure	9.3		calculation	KAO-O-SOD-20		
SDSWBZ 21	pressure	17	7.2	testing	KAO-O-SOD-21		
SDSWBZ 26	pressure	17	7.2	testing	KAO-O-SOD-21		
SDSWBZ 30	pressure	22	2.4	testing	KAO-O-SOD-21		

THE CHARACTERISTIC LOAD-CARRYING CAPACITIES OF JOINTS (CALCULATIONS)

Table 40						
Type of	Characteristic bearing capacity [kN]	Document No				
connector	Timber	Document No.				
PS 60	4.1	BPS-0001/13				
PS 70	4.3	BPS-0002/13				
PS 80	6.9	BPS-0003/13				
PS 90	6.2	BPS-0004/13				
PS 100	6.7	BPS-0005/13				
PS 120	8.2	BPS-0006/13				
PS 140	7.5	BPS-0007/13				
KPS 1	16.3	KE1-0009/14				
KPS 2	18.7	KE1-0010/14				
KPS 3	12.6	KE1-0011/14				
KPS 4	11.6	KE1-0012/14				

Table 41 Overview of bearing capacities of connector type PS [kN]

Type of	Bearing capac (calcula	ity N _{Rd,V} [kN] ation)	Bearing capacity N _{Rd,H1} [kN] (calculation)		Bearing capacity
connector	Bearing capacity of timber	Bearing capacity of steel	Bearing capacity of timber	Bearing capacity of steel	$N_{Rd,H2}$ [kN] (testing)
PS 60	61.7	51.7	12.2	6.9	4.7
PS 70	86.6	51.7	12.2	6.9	4.4
PS 80	99.2	57.3	12.2	9.6	7.7
PS 90	111.8	57.3	12.2	9.6	6.8
PS 100	124.4	57.3	12.2	9.6	7
PS 120	149.6	57.3	12.2	9.6	9.1
PS 140	174.8	57.3	12.2	9.6	7.8

 $N_{Rd,V}$ - Vertical load force, $N_{Rd,H1}$ - Horizontal load force, $N_{Rd,H2}$ - Vertical load force parallel to the side of base Document No.: KAO-L-PS-01

For combinations of loads (F_{Ed,V}, F_{Ed,H1}, F_{Ed,H2}) a linear summation of the utilization ratios may be used. This method may be applied by using a following criteria:

$$\frac{F_{Ed,V}}{N_{Rd,V}} + \frac{F_{Ed,H1}}{N_{Rd,H1}} + \frac{F_{Ed,H2}}{N_{Rd,H2}} \le 1$$

ANNEX 4

NAILING PATTERNS

It is always necessary to put nails in the black marked holes. This is the only one proper pattern because too many or too long nails can weaken the wood, it's quite close to edge (rule is stated below).

Figure 80 Rule for placement nails

Figure 81 Type KLR

Figure 83 Type KPS

Figure 84 Type KPK

••0•0

0•

O

0•

Figure 88 Type LB

Figure 89 Type LU

ANNEX 5

SPECIFICATION OF CONNECTION ELEMENTS

Table 42						
Detail		Connectors/Detail	Connectors/Connection			
Detail	Dower type connectors	[pc.]	[pc.]			
KLR 1	ANCHOR ø 4x50	6	6			
KLR 2	ANCHOR ø 4x50	13	13			
KLR 3	ANCHOR ø 4x50	13	13			
KLR 4	ANCHOR ø 4x50	12	12			
KLR 5	ANCHOR ø 4x50	30	30			
KLR 6	ANCHOR ø 4x50	29	29			
KP 7	ANCHOR ø 4x50 / DIN 571 ø12x100	28 / 4	56 / 8			
KP 8	ANCHOR ø 4x50 / DIN 571 ø 12x100	17 / 2	34 / 4			
KPK 4	ANCHOR ø 4x50	22	22			
KPK 11	ANCHOR ø 4x50	11	11			
KPK 12	ANCHOR ø 4x50	17	17			
KPK 13	ANCHOR ø 4x50	25	25			
KPK 21	ANCHOR ø 4x50	14	14			
KPK 22	ANCHOR ø 4x50	14	14			
KPK 23	ANCHOR ø 4x50	14	14			
KPK 31	ANCHOR ø 4x50	9	18			
KPK 32	ANCHOR ø 4x50	9	18			
KPK 33	ANCHOR ø 4x50	9	18			
KPL 5	ANCHOR ø 4x50	8	8			
KPL 6	ANCHOR ø 4x50	12	12			
KPL 11	ANCHOR ø 4x50	13	13			
KPL 21	ANCHOR ø 4x50	28	28			
KR 1	ANCHOR ø 4x50	3	3			
KR 2	ANCHOR ø 4x50	12	12			
KP 3	ANCHOR ø 4x50	3	3			
KRD 5	ANCHOR ø 4x50	7	7			
KRD 6	ANCHOR ø 4x50	7	7			
SDLZ 1	SDCS 50 / CS ø 5x40	4 / 6	4 / 6			
SDKLR 1	SDCS 50 / CS ø 5x40	4 / 6	4 / 6			
SDKL 1	SDCS 50 / CS ø 5x40	4 / 6	4 / 6			
SDSP 70 A	SDCS 50	4	4			
SDSP 70 B	SDCS 50	4	4			
SDP 90 A	SDCS 50	8	8			

SDCS 50

SDCS 50

SDCS 50

SDCS 50

SDCS 50

SDP 90 B

SDP 100 A

SDP 100 B

SDP 120 A

SDP 120 B

8

8

8

8

8

8

8

8

8

8

Detail	Dowel type connectors	Connectors/Detail [pc.]	Connectors/Connection [pc.]
SDSKW 2	ANCHOR Ø 4x50	4	8
SDSKW 8	SDCS 50	2	4
SDSKP 1	ANCHOR ø 4x50	16	32
SDSKP 5	ANCHOR ø 4x50	18	36
SDSKM 7	ANCHOR ø 4x50	12	24
SDSWBZ 10	ANCHOR ø 4x50 / ANCHOR ø 4x40	8 / 4	8 / 4
SDSWBZ 11	ANCHOR ø 4x50 / ANCHOR ø 4x40	12 / 6	12 / 6
SDSWBZ 14	ANCHOR ø 4x50 / ANCHOR ø 4x40	8 / 4	8 / 4
SDSWBZ 21	ANCHOR ø 4x50 / ANCHOR ø 4x40	12 / 10	12 / 10
SDSWBZ 26	ANCHOR ø 4x50 / ANCHOR ø 4x40	12 / 10	12 / 10
SDSWBZ 30	ANCHOR ø 4x50 / ANCHOR ø 4x40	16 / 12	16 / 12
PS 60	ISO 4014 M10x80-5.8	1	1
PS 70	ISO 4014 M10x90-5.8	1	1
PS 80	ISO 4014 M10x100-5.8	1	1
PS 90	ISO 4014 M10x110-5.8	1	1
PS 100	ISO 4014 M10x120-5.8	1	1
PS 120	ISO 4014 M10x140-5.8	1	1
PS 140	ISO 4014 M10x160-5.8	1	1
LU25 R80 (L80)	ANCHOR ø 4x50	16	16
LU25 R120 (L120)	ANCHOR ø 4x50	24	24
WBC 80	ANCHOR Ø 4x50 / ANCHOR Ø 4x40	24 / 14	24 / 14
WBC 92	ANCHOR Ø 4x50 / ANCHOR Ø 4x40	28 / 14	28 / 14
WBC 100	ANCHOR Ø 4x50 / ANCHOR Ø 4x40	28 / 14	28 / 14
WBC 120	ANCHOR Ø 4x50 / ANCHOR Ø 4x40	34 / 14	34 / 14
WBC 137	ANCHOR ø 4x50 / ANCHOR ø 4x40	38 / 14	38 / 14
WBU45 R45-105 (L45-105)	ANCHOR ø 4x50 / ANCHOR ø 4x40	8 / 4	8 / 4
WBU45 R50-105 (L50-105)	ANCHOR ø 4x50 / ANCHOR ø 4x40	8 / 4	8 / 4
WBU45 R60-120 (L60-120)	ANCHOR ø 4x50 / ANCHOR ø 4x40	10 / 5	10 / 5
KKB 1	ANCHOR ø 4x50 / ISO 4014 M16x160-5.8	24 / 1	48 / 2
LB 1	ISO 4014 M12x120-5.8 / ISO 4014 M12x90-5.8	1 / 1	1 / 2
LB 2	ISO 4014 M12x120-5.8 / ISO 4014 M12x90-5.8	1/1	1/2
LB 4	ISO 4014 M12x120-5.8 / ISO 4014 M12x90-5.8	1 / 1	1 / 2
NT 25	ISO 4017 M5x16-8.8	6	6
NT 40	ISO 4017 M5x16-8.8	10	10
NT 60	ISO 4017 M5x16-8.8	14	14
KPS 1	ANCHOR ø 4x50	16	32
KPS 2	ANCHOR ø 4x50	36	72
KPS 3	ANCHOR ø 4x50	20	40

Detail	Dowel type connectors	Connectors/Detail [pc.]	Connectors/Connection [pc.]
KPS 4	ANCHOR ø 4x50	20	40

ANNEX 6

REFERENCE DOCUMENTS

- [1] Guideline for European Technical Approval of Three-dimensional nailing plates ETAG 015 (edition November 2012)
- [2] Declaration about dangerous substances issued by DOMAX sp. z o.o.
- [3] EN 26891:1991 Timber structures Joints made with mechanical fasteners General principles for the determination of strength and deformation characteristics
- [4] EN ISO 8970:2010 Timber structures Testing of joints made with mechanical fasteners Requirements for wood density
- [5] EN 384+A1:2019 Structural timber Determination of characteristic values of mechanical properties and density
- [6] EN 13183-2:2002 Moisture content of a piece of sawn timber Part 2: Estimation by electrical resistance method
- [7] EN 1309-1:1997 Round and sawn timber Method of measurement of dimensions -Part 1: Sawn timber
- [8] EN 14358:2006 Timber structures Calculation and verification of characteristic values
- [9] EOTA TR 016 "*Method of testing Three-Dimensional Nailing Plates* with examples", version February 2002

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

According to the decision 1997/638/EC¹, of the European Commission the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011 and Commission delegated Regulation (EU) No 568/2014) given in the following table applies:

Product(s)	Intended use(s)	Level(s) or class(es)	Attestation of conformity system(s)
Shear plates, toothed-plate connectors, punched nail plates, nailing plates	For structural timber products		2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Issued in Prague on 28.04.2020

rue

By Mária Schaan Head of the TAB

Annexes:

- Annex 1 Product details and definitions
- Annex 2 Loading and calculations according to static diagrams
- Annex 3 The characteristic load carrying capacities of connectors
- Annex 4 Nailing patterns
- Annex 5 Specification of connection elements
- Annex 6 Reference documents

¹ Official Journal of the European Communities L 268/36 of 19.9.1997